Partial Gradings of Algebras

Marcelo Muniz Alves

Universidade Federal do Paraná

joint work with Eliezer Batista and Joost Vercruysse

PARS 2014 Gramado, RS May 12-15, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Outline of the talk

- Hopf Algebras
- Partial Actions of Hopf algebras
- \blacksquare Partial G-gradings of the matrix algebra
- I Partial Representations and an application to partial \mathbb{Z}_2 -gradings.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Let us write the definition of a group in terms of diagrams.

Let us write the definition of a group in terms of diagrams.

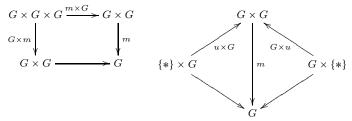
Alongside with the operation m of G, we describe the unit as a map $u : \{*\} \to G$, where $\{*\}$ is a (fixed) unitary set. (so that u "chooses" the neutral element of G).

ション ふゆ くち くち くち くち

Let us write the definition of a group in terms of diagrams.

Alongside with the operation m of G, we describe the unit as a map $u : \{*\} \to G$, where $\{*\}$ is a (fixed) unitary set. (so that u "chooses" the neutral element of G). Associativity: Neutral Element:

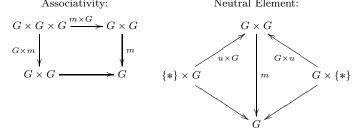
・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ



Let us write the definition of a group in terms of diagrams.

Alongside with the operation m of G, we describe the unit as a map $u : \{*\} \to G$, where $\{*\}$ is a (fixed) unitary set. (so that u "chooses" the neutral element of G). Associativity: Neutral Element:

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ



These two diagrams describe a monoid.

The diagram for the inverse needs more information:

one defines a new operation

 $\begin{array}{rrrr} S: & G & \rightarrow & G \\ & g & \mapsto & S(g) = g^{-1} \end{array}$

and in order to write S(g)g = e as a diagram, we may consider the sequences

$$g\mapsto (g,g)\mapsto (S(g),g)\mapsto S(g)g$$

and

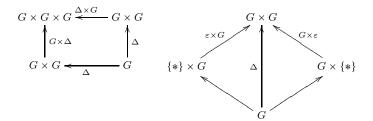
 $g \mapsto * \mapsto e$

ション ふゆ くち くち くち くち

which can be written using m, u and the maps

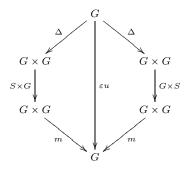
We remark that the maps

 $\begin{array}{rcl} \Delta: & G & \to & G \times G & \varepsilon: & G & \to & \{*\} \\ & g & \mapsto & (g,g) & g & \mapsto & * \\ \text{satisfy the dual diagrams (arrows reversed) of } m \text{ and } u \text{ respectively:} \end{array}$



▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のく⊙

The axiom of the inverse corresponds to the following diagram:



<ロト < 部ト < 注ト < 注ト = 注</p>

Let k be a field.

A **bialgebra** is a vector space B with two pairs of maps:

Let k be a field.

A **bialgebra** is a vector space B with two pairs of maps:

■ the multiplication $m: B \otimes B \to B$ and the unit map $u: k \to B$ that satisfy the same diagrams (with *tensor product* replacing cartesian product) as the first two of G. This says that B is a k-algebra with unit.

ション ふゆ マ キャット マックシン

Let k be a field.

- A **bialgebra** is a vector space B with two pairs of maps:
 - the multiplication $m: B \otimes B \to B$ and the unit map $u: k \to B$ that satisfy the same diagrams (with *tensor product* replacing cartesian product) as the first two of *G*. This says that *B* is a *k*-algebra with unit.
 - The comultiplication $\Delta : B \to B \otimes B$ and the counit $\varepsilon : B \to k$, satisfying the dual diagrams (B is a *coalgebra*)

うつん 川 エー・エー・ エー・ シック

(in the case of groups, there is only one possible pair (Δ, ε)).

Let k be a field.

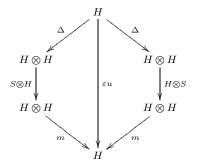
- A **bialgebra** is a vector space *B* with two pairs of maps:
 - the multiplication $m: B \otimes B \to B$ and the unit map $u: k \to B$ that satisfy the same diagrams (with *tensor product* replacing cartesian product) as the first two of *G*. This says that *B* is a *k*-algebra with unit.
 - The comultiplication $\Delta : B \to B \otimes B$ and the counit $\varepsilon : B \to k$, satisfying the dual diagrams (B is a coalgebra)

(in the case of groups, there is only one possible pair (Δ, ε)).

These dual structures must be compatible in the sense that Δ and ε are algebra maps.

ション ふゆ マ キャット マックシン

A bialgebra is a **Hopf algebra** if it has an algebra antimorphism $S: H \to H$, called the **antipode**, such that the diagram below commutes:



One can say that a Hopf algebra is a group in the category of vector spaces (and a group is a Hopf algebra in the category of sets).

イロト イヨト イヨト

3

Hopf algebras act on algebras, just as groups do.

Let H be a Hopf algebra, let A be an algebra. A **left action** of H on A is a structure of left H-module on A which also satisfies:

(i)
$$h \cdot 1_A = \varepsilon(h) 1_A$$

(ii)
$$h \cdot (ab) = \sum (h_{(i,1)} \cdot a)(h_{(i,2)} \cdot b),$$

where $\Delta(h) = \sum h_{(i,1)} \otimes h_{(i,2)}$. One also says that A is a (left) H-module algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

There are other points in common with groups and their representations.

• The tensor product of two left H-modules M, N is again a left H-module by

$$h \cdot (m \otimes n) = \sum_{i} (h_{(i,1)} \cdot m) \otimes (h_{(i,1)} \cdot n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

There are other points in common with groups and their representations.

• The tensor product of two left H-modules M, N is again a left H-module by

$$h \cdot (m \otimes n) = \sum_{i} (h_{(i,1)} \cdot m) \otimes (h_{(i,1)} \cdot n)$$

 \blacksquare When H acts on A, the vector space $A\otimes H$ has a structure of k-algebra given by

$$(a \otimes h)(b \otimes k) = \sum_{i} a(h_{(i,1)} \cdot b) \otimes h_{(i,2)}k.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

This algebra is called the **smash product** of A by H, and is denoted by A#H.

Let G be a *finite* group.

- The **dual group algebra** is the dual vector space k^G with the following structure:
 - If $\{p_g; g \in G\}$ is the dual basis associated to G, then

$$p_g p_h = \delta_{g,h} p_g, \quad \sum_g p_g = 1,$$

and

$$\Delta(p_g) = \sum_{xy=g} p_x \otimes p_y, \quad \varepsilon(p_g) = \delta_{g,e}, \quad S(p_g) = p_{g^{-1}}.$$

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ うへぐ

Let G be a *finite* group.

- The **dual group algebra** is the dual vector space k^G with the following structure:
 - If $\{p_g; g \in G\}$ is the dual basis associated to G, then

$$p_g p_h = \delta_{g,h} p_g, \quad \sum_g p_g = 1,$$

and

$$\Delta(p_g) = \sum_{xy=g} p_x \otimes p_y, \quad \varepsilon(p_g) = \delta_{g,e}, \quad S(p_g) = p_{g^{-1}}.$$

• A left action of $H = k^G$ on A is a G-grading of A:

$$p_g \cdot a = a_g$$
, the *g*-component of $a \in A$.

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ うへぐ

Let G be a *finite* group.

- The **dual group algebra** is the dual vector space k^G with the following structure:
 - If $\{p_g; g \in G\}$ is the dual basis associated to G, then

$$p_g p_h = \delta_{g,h} p_g, \quad \sum_g p_g = 1,$$

and

$$\Delta(p_g) = \sum_{xy=g} p_x \otimes p_y, \quad \varepsilon(p_g) = \delta_{g,e}, \quad S(p_g) = p_{g^{-1}}.$$

• A left action of $H = k^G$ on A is a G-grading of A:

 $p_g \cdot a = a_g$, the *g*-component of $a \in A$.

 \blacksquare The left modules over $A\#k^G$ coincide with the $G\text{-}\mathrm{graded}$ left A-modules.

▲ロト ▲園ト ▲目ト ▲目ト 三目 - のへで

Let G be a group.

 \blacksquare The group algebra kG is a Hopf algebra with

$$\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad S(g) = g^{-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

A left action of H = kG on A is an action of G by automorphisms.

Let G be a group.

The group algebra kG is a Hopf algebra with

$$\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad S(g) = g^{-1}.$$

ション ふゆ くち くち くち くち

A left action of H = kG on A is an action of G by automorphisms.

• The smash product A # kG coincides with the skew group algebra AG.

(Caenepeel, Janssen 2006) A a unital algebra, H Hopf algebra. A (left) **partial** action of H on A, or a structure of **partial** H-module algebra on A, is a linear function $\alpha : H \otimes A \to A$, $\alpha(h \otimes a) = h \cdot a$, such that

ション ふゆ マ キャット マックシン

- (i) $1 \cdot a = a$,
- (ii) $h \cdot (ab) = (h_{(i,1)} \cdot a)(h_{(i,2)} \cdot b),$
- (iii) $h\cdot(k\cdot a)=(h_{(i,1)}\cdot 1_A)(h_{(i,2)}k\cdot a)$

The partial action is symmetric if also

(iii)
$$h \cdot (k \cdot a) = (h_{(i,1)}k \cdot a)(h_{(i,2)} \cdot 1_A).$$

Recall that if one has a partial action of a group G on A, then the A-module $\bigoplus_{g \in G} D_g$ has the structure of a G-graded algebra, the **partial skew group** algebra $A *_{\alpha} G$.

ション ふゆ くち くち くち くち

Recall that if one has a partial action of a group G on A, then the A-module $\bigoplus_{g \in G} D_g$ has the structure of a G-graded algebra, the **partial skew group** algebra $A *_{\alpha} G$.

If A is a left H-module algebra then $A\otimes H$ is an associative algebra with the multiplication

$$(a \otimes h)(b \otimes k) = \sum_{i} a(h_{(i,1)} \cdot b) \otimes h_{(i,2)}k)$$

ション ふゆ マ キャット マックシン

and the subalgebra $\underline{A\#H} = (A \otimes H)(1_A \otimes 1_H)$ is a unital associative algebra.

Let G be a group, A a k-algebra,

$$\alpha = \left(\{D_g\}_{g \in G}, \{\alpha_g : D_{g^{-1} \to D_g}\}_{g \in G}\right)$$

a partial G-action where $D_g = 1_g A$ for all $g \in G$ (1_g central idempotent). For each $g \in G$, define an endomorphism of A by

ション ふゆ くち くち くち くち

If
$$g \cdot a = \alpha_g(a 1_{g^{-1}})$$
, then $g \cdot 1_A = 1_g$ and
(i) $1 \cdot a = a$,
(ii) $g \cdot (ab) = (g \cdot a)(g \cdot b)$,

(iii)
$$g \cdot (k \cdot a) = 1_g (gk \cdot a) = (gk \cdot a)1_g$$

i.e., $g \otimes a \mapsto g \cdot a$ defines a partial action of kG on A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

If
$$g \cdot a = \alpha_g(a 1_{g^{-1}})$$
, then $g \cdot 1_A = 1_g$ and
(i) $1 \cdot a = a$,
(ii) $q \cdot (ab) = (q \cdot a)(q \cdot b)$,

(iii)
$$g \cdot (k \cdot a) = 1_g (gk \cdot a) = (gk \cdot a)1_g$$

i.e., $g \otimes a \mapsto g \cdot a$ defines a partial action of kG on A.

Partial actions of kG

Symmetric partial actions of kG on a k-algebra A correspond to partial actions of G on A where every ideal D_g is generated by a central idempotent.

ション ふゆ マ キャット マックシン

Let G be a finite group. A **partial** G-grading on a k-algebra A is a partial action of the dual group algebra k^G on A (it corresponds to a right partial coaction of kG on A).

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ = - のへぐ

Let G be a finite group. A **partial** G-grading on a k-algebra A is a partial action of the dual group algebra k^{G} on A (it corresponds to a right partial coaction of kG on A).

This is justified by the following:

■ There is the dual concept of a **right coaction** of a Hopf algebra H and, if H is finite-dimensional, right H-coactions \Leftrightarrow left H^* -actions

ション ふゆ マ キャット マックシン

Let G be a finite group. A **partial** G-grading on a k-algebra A is a partial action of the dual group algebra k^{G} on A (it corresponds to a right partial coaction of kG on A).

This is justified by the following:

- There is the dual concept of a **right coaction** of a Hopf algebra H and, if H is finite-dimensional, right H-coactions \Leftrightarrow left H^* -actions
- The same holds for partial actions: there is the concept of partial coactions, due also to Caenepeel and Janssen, and

ション ふゆ マ キャット マックシン

right partial *H*-coactions \Leftrightarrow left partial *H**-actions

Let G be a finite group. A **partial** G-grading on a k-algebra A is a partial action of the dual group algebra k^G on A (it corresponds to a right partial coaction of kG on A).

This is justified by the following:

- There is the dual concept of a **right coaction** of a Hopf algebra H and, if H is finite-dimensional, right H-coactions \Leftrightarrow left H^* -actions
- The same holds for partial actions: there is the concept of partial coactions, due also to Caenepeel and Janssen, and

right partial *H*-coactions \Leftrightarrow left partial *H**-actions

• On the other hand, right kG-coactions \Leftrightarrow G-gradings.

Partial G-gradings of the base field

From now on, we assume that $|G| \neq 0$ in k.

- Partial G-grading of k: map $p_g \to \lambda_g \in k$.
- Define the **support** of $\lambda = (\lambda_g)_{g \in G}$ by

$$H = \{g \in G; \lambda_g \neq 0\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Partial G-gradings of the base field

From now on, we assume that $|G| \neq 0$ in k.

- Partial *G*-grading of *k*: map $p_g \rightarrow \lambda_g \in k$.
- Define the **support** of $\lambda = (\lambda_g)_{g \in G}$ by

$$H = \{g \in G; \lambda_g \neq 0\}.$$

Then H is a subgroup of G and

$$\lambda_g = \frac{1}{|H|} \delta_{gH,H}.$$

ション ふゆ くち くち くち くち

The partial G-gradings of k are in correspondence with the subgroups of G.

G/H-gradings and partial G-gradings

Lifting formula for G/H-gradings

Let G be a finite group, let H be a normal subgroup of G, and let A be a G/H-graded algebra. Then A is also a partial G-graded algebra by

$$p_g \cdot a = \frac{1}{|H|} a_{gH}.$$

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のく⊙

G/H-gradings and partial G-gradings

Lifting formula for G/H-gradings

Let G be a finite group, let H be a normal subgroup of G, and let A be a G/H-graded algebra. Then A is also a partial G-graded algebra by

$$p_g \cdot a = \frac{1}{|H|} a_{gH}.$$

Note that 1_A is an eigenvector for each element of k^G , since

$$p_g \cdot 1_A = \frac{1}{|H|} \delta_{gH,H} 1_A.$$

ション ふゆ マ キャット マックシン

G/H-gradings and partial G-gradings

Conversely, we will say that a partial G-grading of an algebra A has linear support if the unit 1_A is an eigenvector for each element of k^G . The linear support is the support H of the associated partial G-grading of $k \simeq k \ 1_A$.

G/H-gradings and partial G-gradings

Conversely, we will say that a partial G-grading of an algebra A has linear support if the unit 1_A is an eigenvector for each element of k^G .

The **linear support** is the support H of the associated partial G-grading of $k \simeq k \ 1_A$.

Partial G-gradings and G/H-gradings

[_,Batista,Vercruysse 2013] Let G be a finite group, let H be a normal subgroup of G, let A be a k-algebra.

Every linear partial G-grading of A with support H corresponds to a G/H-grading of A by the formula

$$a_{gH} = |H|p_g \cdot a$$

うつん 川 エー・エー・ エー・ シック

and the lifting of this G/H-grading is the original partial G-grading of A.

[Dăscălescu, Ion, Năstăsescu, Rios Montes 1999]

Given $(g_1, g_2, \ldots, g_n) \in G^n$, the formula

$$\deg(E_{i,j}) = g_i g_j^{-1}, \ 1 \le i, j \le n \tag{1}$$

ション ふゆ マ キャット マックシン

defines a G-grading on $M_n(k)$.

[Dăscălescu, Ion, Năstăsescu, Rios Montes 1999]

Given $(g_1, g_2, \ldots, g_n) \in G^n$, the formula

$$\deg(E_{i,j}) = g_i g_j^{-1}, \ 1 \le i, j \le n \tag{1}$$

ション ふゆ マ キャット マックシン

defines a G-grading on $M_n(k)$.

A G-grading of $M_n(k)$ in which every elementary matrix $E_{i,j}$ is homogeneous is called a **good grading** (also an *elementary grading* in [Bahturin, Sehgal, Zaicev 2001].

[Dăscălescu, Ion, Năstăsescu, Rios Montes 1999]

Given $(g_1, g_2, \ldots, g_n) \in G^n$, the formula

$$\deg(E_{i,j}) = g_i g_j^{-1}, \ 1 \le i, j \le n \tag{1}$$

うつん 川 エー・エー・ エー・ シック

defines a G-grading on $M_n(k)$.

A G-grading of $M_n(k)$ in which every elementary matrix $E_{i,j}$ is homogeneous is called a **good grading** (also an *elementary grading* in [Bahturin, Sehgal, Zaicev 2001].

Theorem

[DINM, 1999] Good G-gradings of $M_n(k)$ are in correspondence with elements of G^{n-1} via equation (1) above.

A partial G-grading of $M_n(k)$ is a **good partial grading** if the elementary matrices $\{E_{i,j}; 1 \le i, j \le n\}$ are simultaneous eigenvectors for all operators $p_q \cdot \ldots$

A partial G-grading of $M_n(k)$ is a **good partial grading** if the elementary matrices $\{E_{i,j}; 1 \le i, j \le n\}$ are simultaneous eigenvectors for all operators $p_g \cdot _$.

Characterization of good partial gradings

- [_,Batista,Vercruysse 2013] Let ${\cal G}$ be a finite abelian group.
 - **I** Every good partial G-grading of $M_n(k)$ is a linear grading.
 - **2** Fix a subgroup H of G.

There is a bijective correspondence between good partial $G\operatorname{-gradings}$ of

ション ふゆ マ キャット マックシン

 $M_n(k)$ with linear support H and good G/H-gradings of $M_n(k)$.

Let G be a group, A be a k-algebra.

A **Partial Representation** of *G* on a algebra *B* is a map $\pi : G \to B$ such that (PR1) $\pi(e) = 1_B$, (PR2) $\pi(g) \pi(h) \pi(h^{-1}) = \pi(gh) \pi(h^{-1})$, $\forall g, h \in G$ (PR3) $\pi(q^{-1}) \pi(q) \pi(h) = \pi(q^{-1}) \pi(qh)$, $\forall g, h \in G$.

Let G be a group, A be a k-algebra.

A **Partial Representation** of G on a algebra B is a map $\pi : G \to B$ such that (PR1) $\pi(e) = 1_B$, (PR2) $\pi(g) \pi(h) \pi(h^{-1}) = \pi(gh) \pi(h^{-1})$, $\forall g, h \in G$ (PR3) $\pi(q^{-1}) \pi(q) \pi(h) = \pi(q^{-1}) \pi(qh)$, $\forall g, h \in G$.

Let α be **partial action** of a group G on A s.t. there is a family of central idempotents $\{1_q; q \in G\}$ which generate the ideals D_q , i.e., $D_q = 1_q A$ for all $g \in G$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < ○ </p>

Let α be **partial action** of a group G on A s.t. there is a family of central idempotents $\{1_q; q \in G\}$ which generate the ideals D_q , i.e., $D_q = 1_q A$ for all $g \in G$.

•
$$\alpha_g: D_{g^{-1}} \to D_g$$
 extends to the endomorphism $\theta_g: A \to A$ given by
 $\theta_g(a) = \alpha_g(a1_{g^{-1}})$. The map

$$\begin{aligned} \pi_1 : & G & \to & \operatorname{End}(A) \\ & g & \mapsto & \theta_g \end{aligned}$$

ション ふゆ マ キャット マックシン

is a partial representation of G.

Let α be **partial action** of a group G on A s.t. there is a family of central idempotents $\{1_g; g \in G\}$ which generate the ideals D_g , i.e., $D_g = 1_g A$ for all $g \in G$.

•
$$\alpha_g: D_{g^{-1}} \to D_g$$
 extends to the endomorphism $\theta_g: A \to A$ given by
 $\theta_g(a) = \alpha_g(a1_{g^{-1}})$. The map

$$\begin{array}{rccc} \pi_1: & G & \to & \operatorname{End}(A) \\ & g & \mapsto & \theta_g \end{array}$$

ション ふゆ マ キャット マックシン

is a partial representation of G.

■ Consider the k-algebra generated by the symbols $[g], g \in G$, subject to the relations

$$[e] = 1$$

$$[g][h][h^{-1}] = [gh][h^{-1}]$$

 $[g^{-1}][g][h] = [g^{-1}][gh]$

This is the partial skew group algebra $k_{par}G$.

Let α be **partial action** of a group G on A s.t. there is a family of central idempotents $\{1_q; q \in G\}$ which generate the ideals D_q , i.e., $D_q = 1_q A$ for all $g \in G$.

•
$$\alpha_g: D_{g^{-1}} \to D_g$$
 extends to the endomorphism $\theta_g: A \to A$ given by
 $\theta_g(a) = \alpha_g(a1_{g^{-1}})$. The map

$$\begin{array}{rccc} \pi_1: & G & \to & \operatorname{End}(A) \\ & g & \mapsto & \theta_g \end{array}$$

is a partial representation of G.

- Consider the k-algebra generated by the symbols $[g], g \in G$, subject to the relations
 - [e] = 1 $[g][h][h^{-1}] = [gh][h^{-1}]$
 - $[g^{-1}][g][h] = [g^{-1}][gh]$

This is the partial skew group algebra $k_{par}G$.

partial representations of G on B \iff representations of G on B.

■ Let H be a Hopf algebra, V be a vector space. representation of H on V \Leftrightarrow structure of H-module on V \Leftrightarrow algebra map $\pi : H \to \text{End}(V)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ●□ ● ●

■ Let H be a Hopf algebra, V be a vector space. representation of H on V \Leftrightarrow structure of H-module on V \Leftrightarrow algebra map $\pi : H \to \text{End}(V)$

• More generally, we may say that a representation of H on a algebra B is an algebra map $\pi: H \to B$.

- Let H be a Hopf algebra, V be a vector space. representation of H on V \Leftrightarrow structure of H-module on V \Leftrightarrow algebra map $\pi : H \to \text{End}(V)$
- More generally, we may say that a representation of H on a algebra B is an algebra map $\pi: H \to B$.

ション ふゆ マ キャット マックシン

• (obviously) If A is an H-module algebra then $\pi : H \to \text{End}(A)$, $\pi(h)(a) = h \cdot a$, is a representation.

- Let H be a Hopf algebra, V be a vector space. representation of H on V \Leftrightarrow structure of H-module on V \Leftrightarrow algebra map $\pi : H \to \text{End}(V)$
- More generally, we may say that a representation of H on a algebra B is an algebra map $\pi: H \to B$.

ション ふゆ マ キャット マックシン

• (obviously) If A is an H-module algebra then $\pi : H \to \text{End}(A)$, $\pi(h)(a) = h \cdot a$, is a representation.

 \dots what is a *partial* representation of H, i.e., what is a *partial* H-module?

[_,Batista,Vercruysse 2013] Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi : H \to B$ satisfying the conditions below.

$$(PR1) \ \pi(1_H) = 1_B$$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$

$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$$

$$(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi : H \to B$ satisfying the conditions below.

ション ふゆ マ キャット マックシン

 $(\text{PR1}) \ \pi(1_H) = 1_B$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$
$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$\begin{aligned} &(\text{PR3.1}) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k) \\ &(\text{PR3.2}) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k) \end{aligned}$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

$$(PR1) \ \pi(1_H) = 1_B$$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$

$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$$

$$(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

$$(PR1) \ \pi(1_{H}) = 1_{B}$$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$

$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$$

$$(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

$$(PR1) \ \pi(1_{H}) = 1_{B}$$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$

$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$$

$$(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

$$(PR1) \ \pi(1_{H}) = 1_{B}$$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$

$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$$

$$(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

$$(PR1) \ \pi(1_{H}) = 1_{B}$$

$$(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$$

$$(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$$

$$(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$$

$$(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

ション ふゆ マ キャット マックシン

 $\begin{aligned} &(\text{PR1}) \ \pi(1_H) = 1_B \\ &(\text{PR2.1}) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)})) \\ &(\text{PR2.2}) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)}) \\ &(\text{PR3.1}) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k) \\ &(\text{PR3.2}) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k) \end{aligned}$

Let H be a Hopf algebra over k, B a unital k-algebra. A **partial representation** of H in B is a k-linear map $\pi: H \to B$ satisfying the conditions below.

ション ふゆ マ キャット マックシン

 $(PR1) \ \pi(1_H) = 1_B$ $(PR2.1) \ \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)}))$ $(PR2.2) \ \pi(h)\pi(S(k_{(i,1)}))\pi(k_{(i,2)}) = \pi(hS(k_{(i,1)}))\pi(k_{(i,2)})$ $(PR3.1) \ \pi(h_{(i,1)})\pi(S(h_{(i,2)}))\pi(k) = \pi(h_{(i,1)})\pi(S(h_{(i,2)})k)$ $(PR3.2) \ \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k)$

If H is cocommutative, (PR1)-(PR5) are reduced to

 $\begin{aligned} (\text{PR1'}) & \pi(1_H) = 1_B \\ (\text{PR2'}) & \pi(h)\pi(k_{(i,1)})\pi(S(k_{(i,2)})) = \pi(hk_{(i,1)})\pi(S(k_{(i,2)})) \\ (\text{PR3'}) & \pi(S(h_{(i,1)}))\pi(h_{(i,2)})\pi(k) = \pi(S(h_{(i,1)}))\pi(h_{(i,2)}k) \end{aligned}$

Let A be a partial H-module algebra.

The following are partial representations of H:

$$\pi : H \longrightarrow \operatorname{End}(A)$$

$$h \mapsto h \cdot _$$

$$\pi : H \longrightarrow \underline{A \# H}$$

$$h \mapsto 1 \# h$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

H_{par}

Let H be a k-Hopf algebra. The "partial Hopf algebra" H_{par} is the k-algebra generated by symbols [h], with $h \in H$, satisfying

 $[\alpha h + \beta k] = \alpha[h] + \beta[k]$, for all $\alpha, \beta \in k$ and $h, k \in H$

ション ふゆ マ キャット マックシン

and

 $(1) \ \begin{bmatrix} 1_H \end{bmatrix} = 1_{H_{par}}$

- $(2.1) \ [h][k_{(i,1)}][S(k_{(i,2)})] = [hk_{(i,1)}][S(k_{(i,2)})]$
- $(2.2) \ [h][S(k_{(i,1)})][k_{(i,2)}] = [hS(k_{(i,1)})][k_{(i,2)}]$
- $(3.1) \ [h_{(i,1)}][S(h_{(i,2)})][k] = [h_{(i,1)}][S(h_{(i,2)})k]$
- $(3.2) \ [S(h_{(i,1)})][h_{(i,2)}][k] = [S(h_{(i,1)})][h_{(i,2)}k]$

H_{par}

The linear map $h \in H \mapsto [h] \in H_{par}$ is a partial representation of H in H_{par} .

Characterization of H_{par}

The pair $(H_{par}, [_])$ is determined by the following universal property: For every partial representation $\pi : H \to B$ there is a unique algebra morphism $\hat{\pi} : H_{par} \to B$ such that $\pi = \hat{\pi} \circ [_]$.

うつん 川 エー・エー・ エー・ シック

When H = kG and G is a finite group, one has $H_{par} = k_{par}G$. It is well-known that

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

- $\bullet \dim k_{par}G < \infty$
- $k_{par}G$ is a partial smash product.

When H = kG and G is a finite group, one has $H_{par} = k_{par}G$. It is well-known that

- $\quad \blacksquare \ \dim k_{par}G < \infty$
- $k_{par}G$ is a partial smash product.

If H is any Hopf algebra, then H_{par} is also a partial smash product. On the other hand, it may be infinite dimensional even if H is finite dimensional (for instance, the Sweedler algebra H_4).

When H = kG and G is a finite group, one has $H_{par} = k_{par}G$. It is well-known that

- $\quad \ \ \, \lim k_{par}G < \infty$
- $k_{par}G$ is a partial smash product.

If H is any Hopf algebra, then H_{par} is also a partial smash product.

On the other hand, it may be infinite dimensional even if H is finite dimensional (for instance, the Sweedler algebra H_4).

 H_{par} is also a Hopf algebroid, and via this Hopf algebroid we can provide a monoidal structure to the category of left H_{par} -modules (i.e., we can tensor partial representations).

Theorem

Partial H-module algebras coincide with algebras in the category of left H_{par} -modules.

Partial \mathbb{Z}_2 -gradings

• For $H = k^{\mathbb{Z}_2}$, one has the algebra isomorphism

$$\begin{array}{rcl} H_{par} & \rightarrow & \frac{k[x]}{\langle p(x) \rangle} \\ [p_{\overline{1}}] & \mapsto & x + \langle p(x) \rangle \end{array}$$

ション ふゆ くち くち くち くち

where p(x) = x(x-1)(2x-1).

■ It follows that $T \in \text{End}(V)$ defines a partial representation of $H = k^{\mathbb{Z}_2}$ in End(V) by $\pi(p_{\overline{1}}) = T$ if and only if its minimal polynomial divides p(x) = x(2x-1)(x-1).

Partial \mathbb{Z}_2 -gradings

Classification of Partial \mathbb{Z}_2 -gradings

Let $H = k^{\mathbb{Z}_2}$. Let A be a partially \mathbb{Z}_2 -graded k-algebra.

Let $A = A_0 \oplus A_1 \oplus A_{1/2}$ be its decomposition as left H_{par} -module.

(1) $B = A_0 \oplus A_1$ is a \mathbb{Z}_2 -graded subalgebra of A, with homogeneous components $B_{\overline{0}} = A_0$ and $B_{\overline{1}} = A_1$.

(2) $A_{1/2}$ is a unital ideal of A, $p_{\overline{1}} \cdot x = \frac{x}{2}$ for all $x \in A_{1/2}$, and

 $A \simeq B \times A_{1/2}$

as an algebra.

Partial \mathbb{Z}_2 -gradings

Classification of Partial \mathbb{Z}_2 -gradings

Let $H = k^{\mathbb{Z}_2}$. Let A be a partially \mathbb{Z}_2 -graded k-algebra.

Let $A = A_0 \oplus A_1 \oplus A_{1/2}$ be its decomposition as left H_{par} -module.

(1) $B = A_0 \oplus A_1$ is a \mathbb{Z}_2 -graded subalgebra of A, with homogeneous components $B_{\overline{0}} = A_0$ and $B_{\overline{1}} = A_1$.

(2)
$$A_{1/2}$$
 is a unital ideal of A , $p_{\overline{1}} \cdot x = \frac{x}{2}$ for all $x \in A_{1/2}$, and

$$A \simeq B \times A_{1/2}$$

as an algebra.

Conversely, if B is a \mathbb{Z}_2 -graded algebra and C is a k-algebra, $B \times C$ is partially \mathbb{Z}_2 -graded by defining

$$p_{\overline{0}} \cdot (b, c) = (b_{\overline{0}}, \frac{x}{2}), \quad p_{\overline{1}} \cdot (b, c) = (b_{\overline{1}}, \frac{x}{2}).$$

200

- M.M.S. Alves, Eliezer Batista, Joost Vercruysse, Partial Representations of Hopf Algebras, arXiv:1309.1659.
- E.R. Alvares, M.M.S. Alves, E. Batista, Partial Hopf module categories Journal of Pure and Applied Algebra 217 (2013) 1517-1534.
- M.M.S. Alves, E. Batista, Enveloping Actions for Partial Hopf Actions, Comm. Algebra 38 (2010), 2872-2902.
- S. Caenepeel, K. Janssen, Partial (co)actions of Hopf algebras and partial Hopf-Galois theory, Comm. Algebra 36 (2008), 2923-2946.
- S. Dăscălescu, B. Ion, C. Năstăsescu and J. Rios Montes, Group Gradings on Full Matrix Rings, J. Algebra 200 (1999), 709-728.
- M. Dokuchaev, R. Exel, Associativity of Crossed Products by Partial Actions, Enveloping Actions and Partial Representations, Trans. Amer. Math. Soc. 357 (2005) 1931-1952.
- M. Dokuchaev, R. Exel, P. Piccione, Partial Representations and Partial Group Algebras, J. Algebra 226 (2000) 505-532.